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Abstract

Computing multidimensional aggregates in high dimensions
is a performance bottleneck for many OLAP applications.
Obtaining the exact answer to an aggregation query can be
prohibitively expensive in terms of time and/or storage space
in a data warehouse environment. It is advantageous to have
fast, approximate answers to OLAP aggregation queries.

In this paper, we present a novel method that provides
approximate answers to high-dimensional OLAP aggregation
queries in massive sparse data sets in a time-e�cient and
space-e�cient manner. We construct a compact data cube,
which is an approximate and space-e�cient representation
of the underlying multidimensional array, based upon a mul-
tiresolution wavelet decomposition. In the on-line phase, each
aggregation query can generally be answered using the com-
pact data cube in one I/O or a small number of I/Os, de-
pending upon the desired accuracy.

We present two I/O-e�cient algorithms to construct the
compact data cube for the important case of sparse high-
dimensional arrays, which often arise in practice. The tradi-
tional histogram methods are infeasible for the massive high-
dimensional data sets in OLAP applications. Previously de-
veloped wavelet techniques are e�cient only for dense data.
Our on-line query processing algorithm is very fast and ca-
pable of re�ning answers as the user demands more accuracy.
Experiments on real data show that our method provides sig-
ni�cantly more accurate results for typical OLAP aggregation
queries than other e�cient approximation techniques such as
random sampling.
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1. Introduction

Computing multiple related group-bys and aggregates is one
of the core operations in On-Line Analytical Processing
(OLAP) applications. A particular characteristic of the data
sets|and the primary concern of this paper|is that they are
massive and sparse.

Let D = fD1; D2; : : : ; Ddg denote the set of dimensions,
where each dimension corresponds to a functional attribute.
We represent the underlying data by a d-dimensional array S
of size jD1j � jD2j � � � � � jDdj, where jDij is the size of
dimension Di. Without loss of generality, we assume that
each dimension Di has an index domain f0, 1, . . . , jDij � 1g.
For convenience, we call each array element a cell. A cell
contains S(i1; i2; : : : ; id), the value of the measure attribute
for the corresponding combination (i1; i2; : : : ; id) of the func-
tional attributes. We let N =

Q
1�i�d

jDij denote the total
size (i.e., number of cells) of array S, and we de�ne Nz to
be the number of populated (nonzero) entries in S. We also
refer to Nz as the size of the raw data. The density of array S
is de�ned as

density(S) =
Nz

N
: (1)

The sparse (ROLAP) representation of S is�
(i1; i2; : : : ; id; S(i1; i2; : : : ; id))

�� S(i1; i2; : : : ; id) 6= 0
	

(2)

and is used extensively in practice for sparse data.
An important class of aggregation queries are the so-called

(general) range-sum queries, which are de�ned by applying
the Sum operation over a selected contiguous range in the
domains of some of the attributes [HAMS97]. A range-sum
query can generally be formulated as follows:

Sum(l1:h1; : : : ; ld:hd) =
X

l1�i1�h1

� � �
X

ld�id�hd

S(i1; : : : ; id):

An interesting subset of the general range-sum queries are
d0-dimensional range-sum queries in which d0 � d. Ranges
are explicitly speci�ed for only d0 dimensions, and the ranges
for the other d � d0 dimensions are implicitly set to be the
entire domain all i = f0; : : : ; jDij � 1g. The d0 dimensions
with explicit ranges can be any subset of the d dimensions
and can vary from query to query. For simplicity in notation,
for any given query, let us write the d0 dimensions �rst so
that the d0 explicit ranges are on dimensions D1; D2; : : : ; Dd0

and the last d� d0 dimensions have implicitly de�ned ranges
over the entire domain (i.e., lj = 0 and hj = jDj j � 1, for
d0 + 1 � j � d). Using the above notation, these queries
have the form Sum(l1:h1, . . . , ld0 :hd0 , alld0+1, . . . , alld). For
brevity, we simply write Sum(l1:h1; : : : ; ld0 :hd0).



The popular data cube operator [GBLP96] can be viewed
as computing the special case of all range-sums with singleton
ranges, Sum(l1:h1; : : : ; ld0 : hd0), in which 0 � li = hi < jDij,
for 1 � i � d0. In traditional approaches of answering range-
sum queries using data cube, all the subcubes of the data
cube need to be precomputed and stored. When a query is
given, a search is conducted in the data cube and relevant
information is fetched. The search results may or may not
need to be further processed, depending upon the type of the
given query, and a �nal exact answer is output.

In this paper we take a di�erent approach. As usual, we
preprocess the original array S. But instead of computing
and storing all the subcubes, we compute and store one much
smaller compact data cube, which usually �ts in one or a small
number of disk blocks, depending upon the desired accuracy
for the queries. In the on-line phase, for any given query,
the compact data cube is consulted to give an approximate
answer.

Our approach is preferable to the traditional approaches
in two important respects. First of all, the traditional ap-
proaches require a huge amount of storage space for both
the precomputation and the storage of the precomputed data
cube. As we all know, the size of the precomputed data
cube is much larger than that of the underlying raw data,
especially when S is high-dimensional (e.g., more than six
dimensions) [PC98]. In some applications there may be 100
dimensions! Even in moderately sized scenarios, there are
usually many tables (in a ROLAP system) or multidimen-
sional arrays (in a MOLAP system), and most of them are
already very large in size by themselves. Since a query may
be issued against any table (array), we have to compute and
store one data cube for each of them. This fact would easily
make the task infeasible even for moderately sized applica-
tions. Our approach in this paper does not have the storage
space problem. The size of each compact data cube is very
small.

Secondly, even when a huge amount of storage space is
available and all data cubes can be stored comfortably, it
may take too long to answer a range-sum query, since all
cells covered by the range need to be accessed. The prob-
lem persists even if the partial-sum technique is used (see
Section 3). However, our new approach does not have this
problem at all. A query can be answered by retrieving the
compact data cube, which in typical cases takes just one or
a small number of I/Os.

There are a number of scenarios in which a user may prefer
an approximate answer in a few seconds over an exact answer
that requires tens of minutes or more to compute. An exam-
ple is a drill-down query sequence in data mining [HHW97].
Another consideration is that sometimes the base data are
remote and unavailable, so that an exact answer is not an
option until the data again become available [FJS97].

In developing our wavelet-based techniques to approxi-
mately answer OLAP range-sum queries, we resolve the fol-
lowing four important issues in this paper:

1. I/O-e�ciency of the compact data cube construction,
especially when the underlying multidimensional array
is very sparse. Our earlier wavelet approach [VWI98]
requires a dense storage representation during the con-
struction of the compact data cube, which is infeasi-
ble for very large sparse data sets. Histogram tech-
niques [PI97, PIHS96] usually require excessive I/O
costs when the data size is large and the dimension-
ality is high. Our new wavelet approach is fast and
space-e�cient even for massive sparse data.

2. Response time in answering an on-line query. Generally
one or a small number of I/Os su�ce, and the CPU time
is small.

3. Accuracy in answering typical OLAP queries. The per-
formance of the algorithm is generally superior to that
of random sampling.

4. Progressive re�nement of the approximate answers in
case more accuracy is desired.

In the next two sections we describe our model of I/O
performance and summarize previous work on the problem.
We describe our new wavelet approach in Section 4. The
details of the construction process are given in Section 5. We
show how to process on-line queries in Section 6. We present
our experimental results in Section 7 and draw conclusions in
Section 8.

2. I/O Model

We use the conventional parallel disk model, popularized in
[VS94, Vit99]:

memory
internal

size M
size B

D disks

disk disk

CPUs

disk

Block I/O

The parameters (in units of items) are

M = size of internal memory;

B = size of disk block;

I = number of independent disks:

Data are transferred in large units of blocks of size B so
as to amortize the latency of moving the read-write head and
waiting for the disk to spin into position. For brevity in this
paper, we restrict our attention to the case I = 1 of only one
disk, but our results can be extended to the case I > 1 of
parallel disks; the I/O results are improved by a factor of I.

3. Previous Work

There are two classes of methods for processing OLAP
queries: exact methods and approximate methods. Most
previous work has concentrated on how to compute the ex-
act data cube [AAD+96, GBLP96, HRU96, ZDN97]. Ho
et al. [HAMS97] present an e�cient algorithm to speed up
range-sum queries on a single data cube. The main idea is
to preprocess the array S and precompute all the multidi-
mensional partial sums, which can be represented in what we
call the partial-sum data cube P . Any d0-dimensional range-
sum query can be answered by accessing and computing 2d

0

entries from P .
The biggest problem with this partial-sum approach is

that the partial-sum data cube is typically very dense even
when the original array is sparse. For sparse data, the partial-
sum approach becomes very expensive since it takes huge



amount of space to store the partial-sum data cube P and the
sparse representation does not help us at all. To answer a d0-
dimensional range query, 2d

0

entries need to be accessed. The
corresponding 2d

0

partial-sum values for a given range-sum
query might be stored in di�erent disk blocks and accessing
them may require up to 2d

0

disk I/Os, which is prohibitive.
Approximation methods are becoming attractive in

OLAP applications [HHW97, GM98, VWI98]. They have
been used in DBMSs for a long time. For example, selectivity
estimation in query optimization is always an approximation
process [SAC+79, PIHS96, MVW98]. In choosing proper ap-
proximation techniques, there are two major concerns: the
e�ciency in applying the techniques and the accuracy of the
methods.

Histograms and sampling are used in a variety of impor-
tant applications where quick approximations of a (possibly
multidimensional) array of values are needed, such as query
optimization [SAC+79], parallel join load balancing [PI96],
and approximate query processors [BDF+97]. Matias et
al. [MVW98] �rst explored the use of wavelet-based tech-
niques to construct analogs of histograms in databases. Their
experiments show that wavelet-based approximation methods
can o�er substantial improvements in accuracy over random
sampling and other histogram-based approaches. Traditional
histograms are too ine�cient to construct when the under-
lying data are high-dimensional and cannot �t in internal
memory. (It is interesting that our method in this paper con-
structs compact data cubes that can be viewed as some sort
of general histograms of the underlying raw data.)

Random sampling is a simple and natural way to answer
aggregation queries approximately. An advantage of sam-
pling is that the construction procedure is very e�cient to
run. (In Section 7, we compare our new method with ran-
dom sampling.)

Vitter et al. [VWI98] give the �rst algorithm for approx-
imating the OLAP data cube, based upon the wavelet ap-
proach developed in [MVW98]. Using the partial-sum data
cube [HAMS97], the algorithm computes an approximate ver-
sion, called a compact partial-sum data cube, using wavelet
techniques. The algorithm performs a series of linear scans,
in which each scan is done over a carefully selected group of
dimensions. A nice provable property is that the number of
scans is O(logM=B

N
B
), and thus the total wavelet decomposi-

tion takes O(N
B
logM=B

N
B
) I/Os, where N is the size (number

of cells) of the partial-sum data cube. The algorithm's I/O
performance is optimal for dense data cubes, and the result-
ing compact data cube can generally �t in only one or two
disk blocks.

The critical problem with the above approach is that in
typical OLAP applications, the data are massive and yet at
the same time very sparse, that is, the number Nz of nonzero
cells in the array is much smaller than N , perhaps by a factor
of several million. Since the partial-sum data cube is typically
dense regardless of the sparsity of the original data cube, the
method of Vitter et al. [VWI98] may have to process a data
set that is several million times larger than the original data
set and there simply may not be enough disk space or time
to process the dense partial-sum data cube.

4. Our Method: A High-Level Outline

In this section we summarize our basic method. We elaborate
on the details in the following sections. Our method has three
main components:

1. Decomposition. We compute the wavelet decomposition

of the multidimensional array S, obtaining a set of C0

wavelet coe�cients, where C0 is roughly equal to the
number Nz of nonzero coe�cients. We assume as in
practice that the array is very sparse, that is, Nz � N .
(The dense case was covered previously in [VWI98].)
We use sparse techniques to do the wavelet decompo-
sition directly based upon the sparse (ROLAP) repre-
sentation of S. In Section 5.2, we give the details of
the our e�cient wavelet decomposition algorithms and
analyze their I/O performance.

2. Thresholding and Ranking. We keep only C wavelet co-
e�cients, for some C � C0 that corresponds to the de-
sired storage usage and accuracy. The choice of which C
coe�cients to keep depends upon the particular thresh-
olding method we use. We order (rank) the C wavelet
coe�cients according to their importance in the con-
text of accurately answering typical aggregation queries.
The C ordered coe�cients compose our compact data
cube. The issue of how to choose proper thresholding
method and how to de�ne the (relative) importance of
a wavelet coe�cient is the key for the accuracy of our
approximation method and will be addressed in Sec-
tion 5.3.

3. Reconstruction. In the on-line phase, an aggregation
query is processed by using the k most signi�cant
wavelet coe�cients, for some k � C, to reconstruct an
approximate answer. The choice of k depends upon the
time the user is willing to spend. More accurate answers
can be provided upon request by using more coe�cients
to re�ne the previous approximations. The e�ciency
of the reconstruction step, in terms of both I/O per-
formance and CPU time, is crucial, since it a�ects the
query response time directly. We give our e�cient query
answering algorithm in Section 6.

5. Constructing the Compact Data Cube

5.1. Wavelet Decomposition

Wavelets are a mathematical tool for the hierarchical decom-
position of functions in a space-e�cient manner. Wavelets
represent a function in terms of a coarse overall shape, plus
details that range from coarse to �ne. Regardless of whether
the function of interest is an image, a curve, or a surface,
wavelets o�er an elegant technique for representing the vari-
ous levels of detail of the function in a space-e�cient manner.

To start the wavelet decomposition procedure, �rst we
need to choose the wavelet basis functions. Haar wavelets
are conceptually the simplest wavelet basis functions, and for
purposes of exposition in this paper, we focus our discussion
on Haar wavelets. They are fastest to compute and easiest to
implement. To illustrate how Haar wavelets work, we start
with a simple example which will be used throughout the
paper. (A detailed treatment of wavelets can be found in
any standard reference on the subject, e.g., [JS94, SDS96].)
Suppose we have a one-dimensional \signal" of N = 8 data
items:

S = [2, 2, 0, 2, 3, 5, 4, 4]:

We perform a wavelet transform on it. We �rst average the
signal values, pairwise, to get the new lower-resolution signal
with values

[2, 1, 4, 4]:

That is, the �rst two values in the original signal (2 and 2)
average to 2, and the second two values 0 and 2 average to 1,



and so on. Clearly, some information is lost in this averaging
process. To recover the original signal from the four averaged
values, we need to store some detail coe�cients, which cap-
ture the missing information. Haar wavelets store one half
of the pairwise di�erences of the original values as detail co-
e�cients. In the above example, the four detail coe�cients
are (2 � 2)=2 = 0, (0 � 2)=2 = �1, (3 � 5)=2 = �1, and
(4 � 4)=2 = 0. It is easy to see that the original values can
be recovered from the averages and di�erences.

We have succeeded in decomposing the original signal into
a lower-resolution version of half the number of entries and
a corresponding set of detail coe�cients. By repeating this
process recursively on the averages, we get the full decompo-
sition:

Resolution Averages Detail Coe�cients

8 [2, 2, 0, 2, 3, 5, 4, 4]
4 [2, 1, 4, 4] [0, �1, �1, 0]
2 [1 1

2
, 4] [ 1

2
, 0]

1 [2 3
4
] [�1 1

4
]

We de�ne the wavelet transform (also called wavelet de-
composition) of the original eight-value signal to be the single
coe�cient representing the overall average of the original sig-
nal, followed by the detail coe�cients in the order of increas-
ing resolution. Thus, for the one-dimensional Haar basis, the
wavelet transform of our original signal is given bybS = [2 3

4
, �1 1

4
, 1

2
, 0, 0, �1, �1, 0]: (3)

The individual entries are called the wavelet coe�cients. The
wavelet decomposition is very e�cient computationally, re-
quiring only O(N) CPU time and O(N=B) I/Os to compute
for a signal of N values.

No information has been gained or lost by this process.
The original signal has eight values, and so does the trans-
form. Given the transform, we can reconstruct the exact
signal by recursively adding and subtracting the detail coef-
�cients from the next-lower resolution.

For compression reasons, the detail coe�cients at each
level of the recursion are often normalized; the coe�cients
at the lower resolutions are weighted more heavily than the
coe�cients at the higher resolutions. One advantage of the
normalized wavelet transform is that in many cases a large
number of the detail coe�cients turn out to be very small
in magnitude. Truncating these small coe�cients from the
representation (i.e., replacing each one by 0) introduces only
small errors in the reconstructed signal. We can approximate
the original signal e�ectively by keeping only the most signif-
icant coe�cients.

The one-dimensional wavelet decomposition and recon-
struction procedure can be extended naturally to the multi-
dimensional case. One way to do a multidimensional wavelet
decomposition is by a series of one-dimensional decomposi-
tions. For example, in the two-dimensional case, we �rst
apply the one-dimensional wavelet transform to each row of
the data. Next, we treat these transformed rows as if they
were themselves the original data, and we apply the one-
dimensional transform to each column.

5.2. Building the Compact Data Cube

The goal of this step is to compute the wavelet decomposition
of the multidimensional array S, obtaining a set of C0 wavelet
coe�cients. In this section, we present two algorithms to deal
with the di�cult and important case in which the underlying
data are very sparse. (Dense data can been handled using
the algorithm discussed in [VWI98].)

Our algorithms takes the sparse representation (2) of
array S as input, which we assume is in dimension order
hD1; : : : ; Ddi; that is, the indices of the entries change most
rapidly along the rightmost dimension Dd, next most rapidly
along dimension Dd�1, and so on.1 The array entries for
which the values in the initial set of dimensions D1, . . . , Dk

are �xed form a (d � k)-dimensional hyperplane, which we
denote by hDk+1; : : : ; Ddi. Without loss of generality, we as-
sume that Dd is the dimension with the smallest domain size,
which improves performance in practice.

5.2.1. Algorithm I: Decomposition with Separate

Transposition Step

We use a concrete example to illustrate the compact data
cube construction process. Suppose S is a three-dimensional
array for which jD2j�jD3j �M�2B, but jD1j�jD2j�jD3j >
M � 2B. We do the wavelet decomposition in two passes.
We partition the three dimensions into two groups: fD1g
and fD2; D3g. All tuples with a �xed dimension D1 value
are contiguous in the input S and form a hD2; D3i hyper-
plane. The �rst pass is done by reading in all hD2; D3i hy-
perplanes, one by one. Each hyperplane is guaranteed to �t
in internal memory. An ordinary two-dimensional wavelet
decomposition is performed on each hyperplane and the re-
sult, still using the sparse representation, is written out using
an output double bu�er. After all hD2; D3i hyperplanes have
been processed, we obtain an intermediate array S0, which is
the result of applying the wavelet decomposition to S along
dimensions D2 and D3. The elements of array S0 are still
stored in the dimension order hD1; D2; D3i. We reorganize
them so that they are stored according to the dimension or-
der hD2; D3; D1i. We then do the wavelet decomposition of S0

along D1. We scan S0 and read in the hD1i hyperplanes, one
by one, and an ordinary multidimensional wavelet decomposi-
tion is performed on each of them (in this particular example,
a one-dimensional decomposition). The output of this pass
constitutes the �nal result of the algorithm.

In general, we partition the d dimensions into g groups,
for some 1 � g � d. Let the jth group be Gj = fDij�1+1,
Dij�1+2, : : : ; Dijg, where i0 = 0 and ig = d. The require-
ment that Gj must satisfy is that either��Dij�1+1

��� ��Dij�1+2

��� � � � �
��Dij

�� �M � 2B (4)

or else Gj is a singleton group (i.e., ij�1 + 1 = ij). We can
form the groups one by one in a greedy manner: Given groups
G1, . . . , Gj�1, we choose ij to be the largest integer in the
range (ij�1; d] such that (4) still holds, or else ij = ij�1 + 1.

Algorithm I for constructing the compact data cube con-
sists of g passes. The groups are processed in reverse order,
one per pass. In the (g � j + 1)st pass, each hyperplane in
the jth group Gj is read in, one by one, and processed (i.e.,
the ordinary multidimensional wavelet decomposition is per-
formed), and the results are written out to be used for the
next pass.

One problem is that the density of the intermediate results
will increase from pass to pass, since performing wavelet de-
composition on sparse data usually results in more nonzero
coe�cients. The number of nonzero coe�cients can increase
by a factor of log jDij when doing the wavelet decomposi-
tion along dimension Di. We may thus have to process more
and more entries from pass to pass, even though a lot of en-
tries are very small in magnitude. The natural solution to
this problem is truncation. In each pass, after obtaining the

1Our de�nition of dimension order corresponds to the C pro-
gramming language array declaration syntax.



intermediate array S0, we truncate S0 by cutting o� entries
with small magnitude and keep roughly only Nz entries. We
then use the truncated S0 as the input for next pass. This
process keeps the sparsity of all the intermediate results un-
changed. The truncation operation is reasonable because it is
in line with the wavelet decomposition method itself; that is
the most signi�cant wavelet coe�cients contribute the most
to the reconstruction of the original signal.

However, it is too expensive to do truncation after all
intermediate entries are written out in a multipass process.
Instead, we do truncation in each pass via an on-line learning
process. We keep on-line statistics of the distribution of the
values of the intermediate wavelet coe�cients during each
pass and dynamically maintain a cuto� value. Any entry with
its absolute value below the cuto� value will be thrown away
on the y. The cuto� value is adjusted periodically when
more coe�cients are generated and the statistics change. For
example, if too many entries have been cut o�, the cuto�
value will be decreased. On the other hand, if too few entries
have been thrown away, we need to increase the cuto� value.
This self-adjusting procedure works well in practice.

After the (g�j+1)st pass, for each 1 < j � g, in which Gj

is processed, a transposition is performed on the output of the
pass in order to regroup the cells according to the dimension
order required by the next pass. (There is no need to do a
transposition after the last pass, namely, when j = 1.) The
data can be transposed in logM=B(jDij�1+1j � jDij�1+2j �
� � � � jDij j) distribution passes, based upon the values of the
indices in Gj , and thus the number of I/Os is

O
�
Nz

B
logM=B

���Dij�1+1

��� ��Dij�1+2

��� � � � �
��Dij

���� :
(5)

The �rst distribution pass of each transposition can be done
during the wavelet decomposition procedure (at the cost of
reserving half the internal memory for bu�er space), which
speeds up performance in practice.

After all g passes are done, we obtain the �nal wavelet
decomposition, which consists of C0 � Nz coe�cients. (In
the next section we describe the �nal thresholding process to
reduce the number of coe�cients from C0 to C.) We denote
the value of a coe�cient by v. Each coe�cient, with its index,
is of the form

c = (i1; : : : ; id; v): (6)

The method described above for how the groups are
formed is rather conservative and is related to how dense
arrays are processed in [VWI98]. The following result follows
from (5) with little algebra:

Theorem 1 For internal memory of size M and block
size B, we consider an array S of size N =

Q
1�i�d

jDij,
where jDij is the size of dimension Di, having a total of Nz

nonzero entries. The I/O complexity of Algorithm I (using
the truncation procedure) is

O
�
Nz

B
logM=B

N

B

�
:

In practice we can do better than the conservative bound
in Theorem 1 by using Algorithm I with a more liberal group
partitioning and a smaller number of groups. For example, we
might want relax condition (4) and partition the dimensions
so that the jth group satis�es

density(S)�
��Dij�1+1

��� ��Dij�1+2

���� � � �
��Dij

�� � M � 2B

2
;

(7)
for 1 � j � g. The value of density(S) = Nz=N is typically a
very small fraction in practice. The new partition results in

a much smaller value of g than the one in Theorem 1. Often
we get g = 2, and thus only two passes (and one interme-
diate transposition) are needed. However, it may no longer
be desirable to do the transposition via the distribution ap-
proach of (5); instead we can do the transposition by sorting,
which uses O(Nz

B
logM=B

Nz

B
) I/Os. (See [Vit99] for a proof

in the I/O model that transposition is equivalent to sorting.)
If all the processed hyperplanes individually �t into internal
memory, the resulting I/O bound for Algorithm I will be

O
�
Nz

B
logM=B

Nz

B

�
; (8)

which is optimal.
The tradeo� for the liberal partitioning strategy is that

from time to time, certain hyperplanes may not �t in internal
memory and their wavelet decomposition may require mul-
tiple passes. But the number of such hyperplanes requiring
extra time is usually small, and the recomputation is local-
ized to the hyperplanes. Overall we can get great savings in
Algorithm I by using a smaller g value, as our experiments in-
dicate in Section 7. We use (7) as a guideline for determining
the groups, and we �nd that g = 2 as long as

M � 2
p

density(S)�Nz + 2B:

5.2.2. Algorithm II: Decomposition without Sepa-

rate Transposition Step

One problem with Algorithm I when using a conservative
group partitioning is that we need to perform a transposition
operation to reorder the array entries between passes, for ex-
ample, after processing one group and before proceeding to
the next.

In this section, we present another decomposition algo-
rithm, called Algorithm II, that uses bu�ering and knowledge
of the domain sizes to avoid an explicit transposition step
between passes. The tradeo� is that Algorithm II must use
a conservative group partition, and thus may require more
passes g than in Algorithm I. The input to the algorithm
is the sparse representation of array S. We assume the in-
put is in dimension order hD1; : : : ; Ddi. As before, we par-
tition the d dimensions into g groups, for some 1 � g � d,
in a greedy fashion. Let the jth group be Gj = fDij�1+1,
Dij�1+2, : : : ; Dijg, such that either��Dij�1+1

��� ��Dij�1+2

��� � � � �
��Dij

�� � M

2B + 1
; (9)

or if j = 1 then

jD1j � jD2j � � � � �
��Dij

�� �M � 2B; (10)

or else Gj is a singleton group (i.e., ij�1 + 1 = ij).
The algorithm consists of g passes. We process the g

groups in reverse order, one per pass. Let us illustrate the
process with the following concrete example. Suppose S
is a six-dimensional array and we partition the six dimen-
sions according to the above procedure. Let the partition be
fD1; D2g, fD3; D4g, and fD5; D6g.

At the beginning of the �rst pass, we reserve two types
of bu�ers in internal memory: a processing bu�er and out-
put bu�ers. We have one processing bu�er whose size is
jD5j � jD6j. We have jD5j � jD6j output double bu�ers,
each of size 2B. Each output bu�er has a unique b id 2
f0; 1; : : : ; jD5j � jD6j � 1g.

We then read in all hD5; D6i hyperplanes, one by one, into
the processing bu�er, and perform the ordinary multidimen-
sional wavelet decomposition. The results of the decomposi-
tion are then subjected to the cuto� value. For those coef-
�cients whose magnitudes are bigger than the cuto� value,



we do not write them to disk. Instead, for a coe�cient
c = (i1; : : : ; i6; v), we write it into the output bu�er with
b id = i5 � jD6j + i6. When half of an output double bu�er
becomes full, we write its data to disk.

After we are done with all the hD5; D6i hyperplanes, we
are �nished with the �rst pass.

In the second pass, we read into the processing bu�er the
blocks created during the previous pass, in the order of in-
creasing b id value (and for each b id , in the order the blocks
were created). The important observation here is that the re-
sulting order is the dimension order hD5; D6; D1; D2; D3; D4i,
which is needed for doing the hD3; D4i hyperplane decompo-
sitions, and thus we avoid the need for a separate transpo-
sition step. The transposition is done for free as a result of
the bu�ering mechanism. We can then process similarly as
in the previous pass, except that now the number of output
bu�ers becomes jD3j � jD4j and the size of processing bu�er
becomes jD3j � jD4j.

When performing the decomposition for the dimensions
in the last pass (when processing G1), we no longer need the
output bu�ers, and we can write the decomposition results
out directly.

In the previous example, all the individual dimension sizes
satis�ed the condition

jDij � M

2B + 1
; (11)

except possibly for D1. We call Di a big dimension if its
size does not satisfy (11). All big dimensions form singleton
groups. So far we have not described how to process big
dimensions. If there is only one big dimension, namely, D1,
then we can perform the wavelet decomposition along D1 in
a linear pass since there is no need for transposing the data
via the output bu�ers.

However, when there are multiple big dimensions, Algo-
rithm II as described above no longer works (except for D1).
Let us suppose that Di is a big dimension, for some i 6= 1.
The simplest approach is to use the technique of Algorithm I,
in which the wavelet decomposition is computed in O(Nz=B)
I/Os, followed by a distribution-based transpose operation,
which takes O(Nz

B
logM=B jDij) I/Os. The �rst level of the

distribution can be incorporated into the pass that does the
wavelet decomposition, yielding an improvement in practice.

Putting everything together, we �nd that the total wavelet
decomposition of array S requires O(logM=B

N
B
) passes over

the data, each pass using O(Nz=B) I/Os, and we get the
following result:

Theorem 2 For internal memory of size M and block
size B, we consider an array S of size N =

Q
1�i�d

jDij,
where jDij is the size of dimension Di, having a total of Nz

nonzero entries. The number of I/Os needed for the wavelet
decomposition of S using Algorithm II is

O
�
Nz

B
logM=B

N

B

�
:

The I/O bounds in Theorems 1 and 2 are a tremen-
dous improvement over the bound obtained by Vitter et
al. [VWI98], which is larger by a multiplicative factor
of 1=density (S) = O(N=Nz). In practice, the approach of
Algorithm I is generally preferable, since it can accommo-
date a more liberal group partitioning strategy, which often
results in a much smaller g value, typically g = 2, and the
optimal I/O bound of (8).

5.3. Thresholding and Ranking

Given the storage limitation for the compact data cube, we
can only \keep" a certain number of the C0 wavelet coe�-

cients. Let C denote the number of wavelet coe�cients that
we have room to keep; the remaining wavelet coe�cients will
be implicitly set to 0. Typically we have C � C0, so that the
C coe�cients can �t into one or a few disk blocks. The goal
of thresholding is to determine which are the \best" C coe�-
cients to keep, so as to minimize the error of approximation.

We can measure the error of approximation in several
ways. Let vi be the actual answer of a query qi and let bvi be
the approximate answer of the query. We use the following
�ve di�erent error measures for the error ei of approximating
query qi:

Notation De�nition

absolute error eabsi jvi � bvij
relative error ereli

jvi � bvij
maxf1; vig

modi�ed relative error em rel
i

jvi � bvij
maxf1;minfvi; bvigg

combined error ecomb
i minf�� eabsi ; � � e

relg
i

modi�ed combined error ecomb
i minf�� eabsi ; � � e

m relg
i

The parameters � and � are positive constants.
Our de�nition of relative error is slightly di�erent from

the traditional one, which is not de�ned when vi = 0. The
modi�ed relative error treats over-approximation and under-
approximation in a uniform way. For example, suppose the
exact answer to a query is vi = 10. The approximate an-
swers bvi = 5 or bvi = 20 each have the same modi�ed relative
error, namely, 5=5 = 10=10 = 1. In contrast, in terms of
relative error, the approximation bvi = 5 has a relative error
of 5=10 = 0:5, and the approximation bvi = 20 has a rela-
tive error of 10=10 = 1. The approximation bvi = 0 (which
is a terrible approximation for OLAP purposes) has a rela-
tive error of only 10=10 = 1, while the modi�ed relative error
is 10=1 = 10. The combined error reects the importance of
having either a good relative error or a good absolute error
for each approximation. For example, for very small vi it
may be good enough if the absolute error is small even if the
relative error is large, and for large vi the absolute error may
not be as meaningful as the relative error.

Once we choose which of the above measures to represent
the errors of the individual queries, we need to choose a norm
by which to measure the error of a collection of queries. Let
e = (e1, e2, . . . , eQ) be the vector of errors over a sequence
of Q queries. We assume that one of the above four error
measures is used for each of the individual query errors ei. For
example, for absolute error, we can write ei = eabsi . We de�ne
the overall error for theQ queries by one of the following error
measures:

Notation De�nition

1-norm average error kek1 1

Q

X
1�i�Q

ei

2-norm average error kek2
s

1

Q

X
1�i�Q

ei2

in�nity-norm error kek1 max
1�i�Q

feig
These error measures are special cases of the p-norm av-

erage error, for p > 0:

kekp =
�
1

Q

X
1�i�Q

ei
p
�1=p

:



The �rst step in thresholding is weighting the coe�cients
in a certain way (which corresponds to using a particular
basis, such as an orthonormal basis, for example). In par-
ticular, for the Haar basis, normalization is done by dividing
the wavelet coe�cients bS(2j),. . . , bS(2j+1 � 1) by

p
2j , for

0 � j � logN � 1.
It is well-known that thresholding by choosing the C

largest (in absolute value) wavelet coe�cients after normal-
ization is provably optimal in minimizing the 2-norm of the
absolute errors for the set of singleton queries:�
Sum(i1: i1; : : : ; id: id)

�� 0 � ij < jDj j; for each 1 � j � d
	
:

That is, if we want to minimize the average absolute error in
approximating all the individual cells in S, the best choice
is to keep the C largest (in absolute value) wavelet coe�-
cients [SDS96].

But our goal here is to approximate d0-dimensional range-
sum queries, where usually d0 � d. If a coe�cient ci is more
likely to contribute to a query than another coe�cient cj , we
would like to give ci a higher weight, even its absolute value is
smaller than that of cj . From Lemma 16 in Section 6, we can
observe the following fact: For a coe�cient c = (i1; : : : ; id; v),

the bigger the value
Pk

j=1
[ij = 0], the more likely c is go-

ing to contribute to a d0-dimensional range-sum query.2 We
therefore de�ne the weight function w for coe�cient c as

w(c) =

kX
j=1

[ij = 0]:

In doing thresholding, we pick the C00 (C < C00 < C0)
largest wavelet coe�cients in absolute value, and among those
we pick the C wavelet coe�cients with the largest weight
with respect to function w. (We break ties using the ab-
solute value.) We rank the C coe�cients by ordering them
according to their weights in decreasing order to get our com-
pact data cube. Let us denote by R the compact data cube
computed for a d-dimensional array S. We can view R as a
one-dimensional array of length C, with each entry being a
wavelet coe�cient value and its indices in the sparse repre-
sentation of form

R[j] = (ij1 ; : : : ; ijd ; vj); 1 � j � C: (12)

The entries are ranked according to their importance in de-
creasing order.

6. Answering On-Line Queries

In this section, we show how to answer on-line aggrega-
tion queries using the compact data cube constructed in
the previous section. Let's consider a range-sum query
Sum(l1:h1; : : : ; ld0 :hd0).

An advantage of the partial-sum approach of [VWI98] is
that we need to reconstruct only 2d

0

values, not 2d values,
of the partial-sum data cube in order to answer this query,
which requires processing min

�
k; 2
Q

1�i�d0
log jDij

	
wavelet

coe�cients in the worst case, where k is the speci�ed number
of stored coe�cients in the compact data cube to use for the
approximation. If we abandon the partial-sum data cube and
use the compact data cube, one big concern is that we may
lose this speed advantage. It turns out that we will not. In
fact, our algorithm for answering queries is even faster, both
theoretically and in practice: In the partial- sum scenario us-
ing the logarithm transform in [VWI98], a wavelet coe�cient

2We use the notation [ij = 0] to denote 1 if ij = 0 and 0 if
ij 6= 0.
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Figure 1: Error tree for N = 8.

may be involved in the approximation of several of the 2d
0

values, so the CPU time complexity is O(2d
0

d0k), whereas in
our new approach the CPU time complexity for the standard
implementation is only O(d0k) with a very small constant fac-
tor of proportionality (roughly 2) in terms of the number of
arithmetic operations. (A more complicated approach yields
an O(d0k)-time algorithm for the former case, but only if the
logarithm transform is not used.)

To fully understand the on-line query processing algo-
rithm, we examine the relationship between wavelet coe�-
cients and a range-sum query by using the error tree structure
introduced in [MVW98]. The error tree is built based upon
the wavelet transform procedure. Figure 1 is the error tree for
the example in Section 5.1. Each internal node is associated
with a wavelet coe�cient value, and each leaf is associated
with an original signal value. (For purposes of exposition, the
wavelet coe�cients are unnormalized, but in the implementa-
tion the values are normalized and the algorithm is modi�ed
appropriately.) Internal nodes and leaves are labeled sepa-
rately. Their labels are in the domain f0; 1; : : : ; N � 1g for
a signal of length N . For example, the root is an internal
node with label 0 and its node value is 2.75 in Figure 1.
For convenience, we shall use \node" and \node value" inter-
changeably.

The construction of the error tree exactly mirrors the
wavelet transform procedure. It is a bottom-up process.
First, leaves are assigned original signal values from left to
right. Then wavelet coe�cients are computed, level by level,
and assigned to internal nodes.

As the �gure shows, the (unnormalized) value of each in-
ternal node i is denoted by bS(i), and the value of each leaf j is
denoted by S(j). We use left(i) and right(i) to denote the left
and right child of any node i, and we use leaves(i) to denote
the set of leaves in the subtree rooted at i. The average value
of the nodes in leaves(i) is denoted by ave leaf val(i). For
any leaf i, we use path(i) to denote the set of internal nodes
(or the node values) along the path from i to the root. For
any two leaves l � h, we use S(l:h) to denote the range-sum
between S(l) and S(h), that is,

S(l:h) =

hX
i=l

S(i): (13)

Below are some useful facts that are helpful for under-
standing our algorithm.

Lemma 1 For any nonroot internal node i, we have

bS(i) = ave leaf val
�
left(i)

�
� ave leaf val

�
right(i)

�
2

:

Lemma 2 The reconstruction of any signal value depends
only upon the values of those internal nodes along the path



from the corresponding leaf to the root. That is, the recon-
struction of any leaf value S(i) depends only upon the nodes
in path(i).

Consider the range sum (13). It is an algebraic sum of
many internal nodes. For example, for l = 0, h = 1,

S(0) + S(1) =
�bS(0) + bS(1) + bS(2) + bS(4)�

+
�bS(0) + bS(1) + bS(2)� bS(4)�:

Note that the two terms of bS(4) cancel out each other, so bS(4)
does not contribute to the �nal summation. In general, any
original signal S(i) can be represented as the algebraic sum
of the wavelet coe�cients along the path path(i). A nonroot
internal node contributes positively to the leaves in its left
subtree and negatively to the leaves in its right subtree. For
a range sum, the contributors may cancel each other, and we
have the following result:

Lemma 3 A nonroot internal node x contributes to the
range sum (13) only if x 2 path(l) [ path(h). In particular,
the contribution of x to (13) is���left leaves(x; l: h)��� ��right leaves(x; l:h)

���� bS(x);
where

left leaves(x; l:h) = leaves
�
left(x)

�
\ [l; h]; (14)

right leaves(x; l:h) = leaves
�
right(x)

�
\ [l; h]: (15)

Mathematically, we can write any range sum in terms of
all the wavelet coe�cients as

S(l: h) =
X
x

���left leaves(x; l:h)�����right leaves(x; l:h)���bS(x);
where the summation is over all internal nodes x. In our
algorithm, however, we do not evaluate all the terms. We
quickly determine the nonzero contributors and evaluate their
contribution.

Let us relook at the example in Section 5.1; its error tree is
shown in Figure 1. The original signal S can be reconstructed
from bS by the following formulas:

S(0) = bS(0) + bS(1) + bS(2) + bS(4)
S(1) = bS(0) + bS(1) + bS(2) � bS(4)
S(2) = bS(0) + bS(1) � bS(2) + bS(5)
S(3) = bS(0) + bS(1) � bS(2) � bS(5)
S(4) = bS(0) � bS(1) + bS(3) + bS(6)
S(5) = bS(0) � bS(1) + bS(3) � bS(6)
S(6) = bS(0) � bS(1) � bS(3) + bS(7)
S(7) = bS(0) � bS(1) � bS(3) � bS(7)
For example, S(2) depends only upon path(2) = fbS(5), bS(2),bS(1); bS(0)g. If we want to compute the range sum S(2: 5),
we can see that although bS(1) contributes to each of S(2),
S(3), S(4), and S(5), its total contribution cancels out, and
the net e�ect is that it does not contribute at all. Similarly,bS(5) and bS(6) are gone, and we have

S(2: 5) = 4bS(0)� 2bS(2) + 2bS(3):
The formula can also be veri�ed by using Lemma 3.

We can extend the above observation to the multidi-
mensional case. For example, for a two-dimensional array
with jD1j = jD2j = 8, we can answer the range-sum query
Sum(4: 7; 0: 7) (note that D2's range is the special range all2)

using the following formula that involves only coe�cientsbS(0; 0) and bS(1; 0):
Sum(4: 7; 0: 7) = 8� 4�

�bS(0; 0)� bS(1; 0)�:
Lemma 4 In the reconstruction process, a wavelet coef-
�cient c = (i1; : : : ; id; v) contributes to the range sum
Sum(l1:h1; : : : ; ld0 :hd0) only if id0+1 = � � � = id = 0. Its
contribution is

v

dY
j=1

���left leaves(ij ; lj :hj)��� ��right leaves(ij ; lj :hj)
���

= v

d0Y
j=1

���left leaves(ij ; lj :hj)��� ��right leaves(ij ; lj :hj)
���

�
dY

j=d0+1

jDj j:

To answer a query of form Sum(l1:h1; : : : ; ld0 :hd0) using k
coe�cients of the compact data cube R, we use the following
algorithm:

AnswerQuery(R; k; l1; h1; : : : ; ld0 ; hd0)
answer = 0;
for i = 1; 2; : : : ; k do
if Contribute(R[i]; l1; h1; : : : ; ld0 ; hd0) then
answer = answer+
Compute Contribution(R[i]; l1; h1; : : : ; ld0 ; hd0);

for j = d0 + 1; : : : ; d do
answer = answer � jDj j;

return answer ;

Function Contribute(R[i]; l1; h1; : : : ; ld0 ; hd0) returns true if
the R[i] contributes to the range-sum query, and it
returns false otherwise. The actual contribution of
R[i] to the speci�ed query is computed by function
Compute Contribution(R[i]; l1; h1; : : : ; ld0 ; hd0).

Based upon the regular structure of the error tree and
the preceding lemmas, we have devised two algorithms to
compute the above two functions. Each algorithm has CPU
time complexity of about 2d0. For reasons of brevity, we defer
the details to the full paper.

Theorem 3 For a given aggregation query of form

Sum(l1:h1; : : : ; ld0 :hd0);

the approximate query answer can be computed based upon the
top k coe�cients in the compact data cube using a

�
(d+ 1)k

�
-

space data structure in 2d0 �min
�
k; 2
Q

1�i�d0
log jDij

	
CPU

time.

Proof Sketch: We only need to process the �rst k coe�cients
in R. Each of the coe�cients is a (d+1)-tuple of the form (6),
so the space complexity is (d+1)k. The CPU time complexity
follows easily from that of the two functions. An alternate
mechanism is to process only the coe�cients needed, which
are at most 2

Q
1�i�d0

log jDij.
Often the �rst k coe�cients of the compact data cube

reside in internal memory. If instead they are on disk, they
occupy ddk=Be disk blocks, which is typically one or a small
constant, so they can be retrieved with a constant number of
I/Os. In terms of CPU time, the quantity 2

Q
1�i�d0

log jDij
is almost always larger than k in practice, so the faster and
simpler way to evaluate the approximation takes O(d0k) CPU
time. By comparison, the CPU running time is 2d

0

times
faster than the algorithm in [VWI98]!

Our algorithm has the useful feature that it can progres-
sively re�ne the approximate answer with no added overhead.



If a coe�cient contributes to a query, its contribution can be
computed independently of the other coe�cients. Therefore,
to re�ne a query answer, the contribution of a new coe�cient
can be added to the previous answer in O(d0) CPU time,
without starting over from scratch.

7. Experiments

7.1. Data Description

In many OLAP applications, the data have high dimensions
and the correlations among the functional attributes and the
measure are intricate and do not match arti�cial data mod-
els. To make our experimental results meaningful, we per-
formed our experiments using both real-world data and syn-
thetic data of high dimension. For brevity, we report the ac-
curacy of our approximate query answers for only real data.
To analyze the speed of our compact data cube construction
algorithm, we report the running time of our algorithm on
tunable synthetic datasets.

We obtained our real-world data from the U.S. Census Bu-
reau using their Data Extraction System (DES) [Bur]. Our
data source is the Current Population Survey (CPS) and
our extracted �le is the March Questionnaire Supplement{
Person Data File. The �le contains 372 attributes, from
which we chose 11. Our measure attribute is income,
and the 10 functional attributes are age, marital status,
sex, education attainment, race, origin, family type, de-
tailed household summary, age group, and class of worker.
In the original data �le, all the attributes are already prepro-
cessed and have a relatively small dimension size; that is, the
domain of each dimension Di is f0; 1; : : : ; jDij � 1g, for some
small integer jDij. Although the dimension sizes are generally
small, the high dimensionality results in a ten-dimensional ar-
ray with more than 16 million cells. The density of the array
is about 0:001; there are 15,985 nonzero elements. In this
setting we can imagine that several sparse data sets are ap-
proximated, and each data set must be approximated using
very little space.

Our synthetic datasets are generated using our own data
generation model described in the Appendix.

7.2. E�ciency of the Compact Data Cube Con-

struction Algorithm

We implemented our compact data cube construction algo-
rithms using the Transparent Parallel I/O Programming En-
vironment (TPIE) system [VV96, Ven97, Ven94]. TPIE is
a collection of templated functions and classes to support
high-level and e�cient implementations of external memory
algorithms. The basic data structure in TPIE is a stream,
representing a list of objects of an arbitrary type. The sys-
tem includes I/O e�cient implementations of algorithms for
scanning, merging, distributing, and sorting streams, which
are building block for our algorithms.

We did our experiments on a Digital Alpha workstation
running Digital UNIX 4.0, with 512MB of internal memory.
Since the sizes of the raw data sets used in our experiments
are relatively small (44MB to 1GB), we restricted the amount
of internal memory used by our program to be in the range
from 1MB to 10MB. For all the runs using Algorithm I, the
logical block transfer size used by TPIE streams was 256KB
(32 times the physical disk block size 8KB) in order to achieve
a high transfer rate. Smaller logical block sizes resulted in
slightly longer run times. However, for all the runs using
Algorithm II, we used a smaller logical block transfer size
of 16KB in order to keep the number g of passes small.
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Figure 2: Construction time vs. density.

In the �rst group of experiments, we use synthetic data
and measure the elapsed time of the compact data cube con-
struction algorithms as a function of the data density Nz=N .
We �x the number of dimensions d, the number of nonzero
entries Nz, and the internal memory size M .

Figure 2 depicts the results from one set of the exper-
iments, in which we �x d = 10 and Nz = 106. The size
of each data item is 44 bytes, and the internal memory size
parameter M is set to 190650 (corresponding to 8MB). The
size of the sparse representation of the raw data is 44MB.
By changing the dimension size parameters jDij, we obtain
multidimensional arrays with di�erent sizes N in the range
from 16�Nz to 2

20 �Nz . This corresponds to the densities
in the range from 0:06 to 10�6. We partition the dimensions
according to (7). For all data sets, we have g = 2, although
the ones with small density have very big values of N . For
example, the data set with density of 10�6 has array size
N � 240.

We ran our compact data cube wavelet decomposition al-
gorithms against �ve data sets. The results are shown in
Figure 2. To make the plot clear, we plot the logarithm of
density on the x axis. The x coordinate x = �i corresponds
to a density of 10�i. As we can see from the �gure, the run-
ning time of Algorithm I for the �ve data sets varies slightly
(in the range from 242 seconds to 306 seconds) as the density
changes. The di�erences in running time are mainly caused
by the e�ect of the on-line cuto�. For some runs, slightly
more than Nz coe�cients are written out during the �rst
pass, which causes a longer running time, whereas it is the
other way around for some other runs. The running time of
Algorithm II decreases signi�cantly as the density increases.
The reason for the decrease is that Nz is �xed, and a data set
with small density corresponds to a big N value. Since Al-
gorithm II cannot apply the more liberal group partitioning
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Figure 3: Construction time vs. input raw data size.



of (7), the resulting g value is large. On the other hand, Al-
gorithm I takes advantage of (7) for partitioning the groups
and performs noticeably better than Algorithm II for very
sparse data.

Our methods require less time and storage space than
do other methods. For example, for the data set with the
smallest density 1=106 , if we use the partial-sum data cube
approach of [HAMS97], we will need to process and store a
partial-sum cube that contains 1012 nonzero cells and takes
up 4GB storage space if we use the MOLAP (array) repre-
sentation, even though the raw data size is only 44MB. If we
use the compact partial-sum data cube approach in [VWI98],
the �nal compact partial-sum data cube is much smaller in
size than that of the raw data, but there will be time and
space problems during the construction stage because of the
need to compute the dense partial-sum data cube during the
wavelet decomposition.

In the second group of experiments, we measure the
elapsed time in terms of the raw data size. In each set of the
experiments in this group, we �x the number of dimensions d,
the density Nz=N , and the amount of internal memory M .
By changing Nz and N proportionally, we obtain data sets
with the same density but di�erent size.

Figure 3 plots the result of one set of the experiments,
in which we use d = 10, data item size of 44 bytes, M =
190650 (corresponding to 8MB), and a density of 0:001. The
value Nz varies from 1 million to 16 million, corresponding to
a raw data size from 44MB to 704MB. From Figure 3, we can
see that the running time of both algorithms scales almost
linearly with respect to the input data size.

In all the experiments, the initial order of the data is in
the order needed for the �rst pass of the data cube construc-
tion algorithms. We also graph in Figures 2 and 3 the time
it takes to sort each data set using TPIE, so that the speed
of the data cube construction algorithms can be assessed in
terms of the time it takes to sort a similarly sized �le. Note
however that the TPIE sorting routine has an extra speed ad-
vantage in that it has been carefully optimized. Algorithm I
was fairly easy to program since it makes use of the TPIE
scan and sorting operations. However, it can be optimized
further by performing the �rst pass of each transposition step
during the actual wavelet decomposition, as suggested in Sec-
tion 5.2.1. Algorithm II should also be further optimized; our
implementation did not make use of double bu�ering.

7.3. Accuracy of the Approximate Answers

In this section, we compare the accuracy of our method with
that of the traditional random sampling method in answer-
ing typical range-sum queries. The simplest way of using
random sampling is, during the o�-line phase, to take a ran-
dom sample of a certain size from the raw data. When a
query is presented in the on-line phase, the query is evalu-
ated against the sample, and an approximate answer is given
in the obvious way: If the answer of the query using a sample
of size t is s, the approximate answer is s �Nz=t. The new
sampling-based summary statistics proposed in [GM98] can-
not be applied here to any advantage since our raw data do
not contain duplicate tuples. We chose not to do any com-
parisons with traditional histogram methods [PIHS96, PI97],
because as we mentioned in Section 1, they are too ine�-
cient to construct for high-dimensional data that cannot �t
in internal memory.

The relative e�ectiveness of random sampling and that of
our method are fairly constant over a wide variety of synthetic
data sets and range-sum query sets. Our compact data cube

generally provides more accurate results than that of a ran-
dom sample of the same size. If the locations of the nonzero
entries are uniformly distributed in the multidimensional ar-
ray, random sampling may perform better. But uniform dis-
tributions in real-life data warehouses are rare.

We measure the accuracy of the methods by using both
the real data and synthetic data. For the brevity of this
paper, we present the results from a typical set of our real-
data experiments. (The other experiments were qualitatively
similar.) In the experiments, we specify partial ranges on
d0 = 3 of the d = 10 dimensions and average our results over
the following d0-dimensional range-sum queries:�
Sum(l1:h1; l2:h2; l3:h3)

�� hi = li +�; 0 � li � hi < jDij;
for each 1 � i � 3

	
where � is a nonnegative integer constant.

Figure 4 plots the accuracy of our method in comparison
with random sampling for di�erent error metrics and various
storage space sizes k. We used � = 10. The absolute er-
rors are normalized by the largest exact answer L = 766327
for the query set. The sampling results are the averages for
�ve di�erent runs. The storage size is measured in terms of
the number k of wavelet coe�cients (for our method) or the
number of sample points (for sampling) used in answering
the queries. The wavelet coe�cients and the sample points
are each of form (6), which is a (d + 1)-tuple; since d = 10
for our data set, each wavelet coe�cient (sample point) is
represented by a tuple of 11 numbers.

As shown in Figure 4, the accuracy of our compact data
cube is noticeably better than that of random sampling. For
example, when using only k = 50 coe�cients in our compact
data cube method, the average relative error for the query set
is only 17%, and the average relative error is about 10 times
better than for random sampling.

8. Conclusions

In this paper, we present an e�cient and e�ective technique
based upon a multiresolution wavelet decomposition that
yields an approximate and space-e�cient representation of
the underlying multidimensional data in OLAP applications.

Our compact data cube construction algorithms are very
e�cient in term of I/O complexity, especially when the raw
data are very sparse. In the on-line phase, by using the hier-
archical structure of the wavelet decomposition, we obtain an
e�cient algorithm for answering typical OLAP aggregation
queries. Experiments show our compact data cube provides
excellent approximation for on-line range-sum queries with
limited space usage and little computational cost

One feature of the approach of Vitter et al. [VWI98] for
dense multidimensional arrays that we have not incorporated
into the sparse approach presented in this paper is the use
of special transforms for further improvements in relative ac-
curacy. The logarithm transform in [VWI98] is based upon
the use of the partial-sum data cube. It would be interest-
ing to explore alternative transforms or perhaps compression
approaches to the partial-sum data cube. It is possible that
such transforms are e�ective mainly in lower dimensions.

We are considering alternative normalization and thresh-
olding methods based upon more sophisticated probability
distributions of query patterns. To get further improvements
in the space-accuracy tradeo�, we are working on quantizing
the wavelet coe�cients and entropy encoding of the quan-
tized coe�cients. In other joint work, we are developing dy-
namic e�cient algorithms for maintaining the compact data
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Figure 4: Accuracy of approximate query answers for the compact data cube and for random sampling.

Attribute Value

d the number of dimensions
jDij the size of the ith dimension, 1 � i � d

n region the number of dense regions in multidimensional space
n1 region the number of type 1 dense regions
n2 region the number of type 2 dense regions

T the sum of all the nonzero values
Z the Zipf parameter for the value distribution dense regions

z min the minimum Zipf parameter for type 2 dense regions
z max the maximum Zipf parameter for type 2 dense regions
V min the minimum volume of a dense region
V max the maximum volume of a dense region

noise volume level % of the number of nonzero entries outside dense regions
w.r.t to the total number of non-zero entries

noise weight level % of the sum of the nonzero values outside dense regions w.r.t. T

Table 1: Description of the synthetic data.

cube, given updates in the underlying raw data. We are also
working on applying our techniques to other operators (e.g.,
projection) other than Sum.
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Appendix: Synthetic Data Description

We use own data generation model and di�erent combina-
tions of parameters to generate a wide variety of synthetic
datasets for our timing experiments. We model the distribu-
tion of the nonzero values in a multidimensional array by the
parameters de�ned in Table 1.

The program will generate the sparse representation of a
d-dimensional array whose size is determined by the param-
eters jDijs, for 1 � i � d. The nonzero entries are mainly
located in n region dense regions. The center of each dense
region is a randomly picked position in the d-dimensional ar-
ray. The volume of any dense region (which is de�ned as
the number of cells in the region) is a random number be-
tween V min and V max. Each region has a sum which is
the summation of the values for all the cells contained in
the region. The Zipf distribution parameter Z, together with
T (1�noise weight level) and n region, are used to generate
values which are randomly assigned to each region as its sum.

A dense region can be either type 1 or type 2. A type 1
region has a distribution where all dimensions are indepen-
dent of one other and obey the unbiased binomial distribu-
tion. To generate a type 2 region, we �rst use the Zipf distri-
bution with parameter z (where z is uniformly chosen from
[z min; z max]) to generate a set of values. The values are
then assigned to the cells in the region in such a way that the
closer a cell is to the center, the bigger the assigned value is.

We also consider the fact that besides the nonzero cells
in the dense regions, there might be some isolated nonzero
cells outside those dense regions. The number of such
cells is de�ned by the parameters noise volume level and
the sum of these isolated nonzero values are de�ned by
noise weight level. Their positions are generated in a ran-
dom way.


